|  | 
template<matrix_order RO, matrix_style RS, typename T , matrix_order PO1, matrix_style PS1, matrix_order PO2, matrix_style PS2, matrix_order PO3, matrix_style PS3>  
        
          | Matrix<T,RO,RS> scythe::chol_solve | ( | const Matrix< T, PO1, PS1 > & | A, |  
          |  |  | const Matrix< T, PO2, PS2 > & | b, |  
          |  |  | const Matrix< T, PO3, PS3 > & | M |  
          |  | ) |  |  |  
Solve  for x via backward substitution, given a lower triangular matrix resulting from Cholesky decomposition. This function solves the system of equations  via backward substitution. L is the lower triangular matrix generated by Cholesky decomposition such that  . This function is intended for repeatedly solving systems of equations based on A. That is A stays constant while b varies. Parameters:
  
    | A | A symmetric positive definite Matrix. |  | b | A column vector with as many rows as A. |  | M | The lower triangular matrix from the Cholesky decomposition of A. | 
 See also:chol_solve(const Matrix<T,PO1,PS1>&, const Matrix<T,PO2,PS2>&) 
cholesky(const Matrix<T, PO, PS>&) 
lu_solve (const Matrix<T,PO1,PS1>&, const Matrix<T,PO2,PS2>&, const Matrix<T,PO3,PS3>&, const Matrix<T,PO4,PS4>&, const Matrix<unsigned int, PO5, PS5>&) 
lu_solve (Matrix<T,PO1,PS1>, const Matrix<T,PO2,PS2>&)
 Exceptions:
  
  
 References scythe::Matrix_base< ORDER, STYLE >::isColVector(), scythe::Matrix_base< ORDER, STYLE >::isNull(), scythe::Matrix_base< ORDER, STYLE >::isSquare(), scythe::Matrix_base< ORDER, STYLE >::rows(), and SCYTHE_CHECK_10. |